ÌÀÐÕÈ
ËÈ×ÍÛÉ ÊÀÁÈÍÅÒ ÑÒÓÄÅÍÒÀ
ÏÐÎÅÊÒÍÛÅ ÃÐÓÏÏÛ III ÊÓÐÑÀ 2024/2025 ó÷. ã.
ÊÎÍÔÅÐÅÍÖÈÈ 2023-2024
Âûáîðû çàâåäóþùèõ êàôåäðàìè. Êîíêóðñ ÏÏÑ
ÔÀÊÓËÜÒÅÒ ÏÎÂÛØÅÍÈß ÊÂÀËÈÔÈÊÀÖÈÈ
2024 - ÃÎÄ ÑÅÌÜÈ
ÍÀÖÈÎÍÀËÜÍÛÉ ÏÐÎÅÊÒ "Íàóêà è Óíèâåðñèòåòû"
ÑÒÀƨРÌèíîáðíàóêè Ðîññèè
ÇÀÙÈÒÀ ÏÐÀÂ ÍÅÑÎÂÅÐØÅÍÍÎËÅÒÍÈÕ Â ÑÅÒÈ ÈÍÒÅÐÍÅÒ


English version Russian version



INTERNATIONAL SCIENTIFIC AND EDUCATIONAL ONLINE JOURNAL 
ARCHITECTURE AND MODERN INFORMATION TECHNOLOGIES

2(51) 2020


Article PHOTOVOLTAIC PANELS AND BIOCLIMATIC COMFORT OF THE ARCHITECTURAL ENVIRONMENT
AuthorsM. Myagkov
Moscow Institute of Architecture (State Academy), Moscow, Russia
L. Alekseeva
Moscow State University,
Faculty of Geography, Moscow, Russia
AbstractIn the search for a way to reduce greenhouse gas emissions, considerable attention is paid to the alternative energy sources. One of the most promising solution is considered to be the massive use of photovoltatic elements. In countries with large free from economic use territories, PVP can be used in the format of "solar power plants". In urban areas the prospects for PVP are associated with integration into the outer shells of buildings and structures. However, the use of PVP has a complex of negative consequences for the environmental characteristics of the human environment. In particular, due to a decrease in albedo, PVP increase the amount of absorbed solar radiation and increase the temperature of the environment at their location. The article deals with the bioclimatic aspect of the massive application of PVP in an urbanized area on the example of Moscow. It is shown that this can lead to a significant increase in urban heat island and deterioration of bioclimatic comfort to overheating values, critical for humans
Keywords: renewable energy sources, photovoltaic panels, architecture of buildings and structures, building integrated photovoltatics, bioclimatic comfort, urban climate, urban heat island, photovoltaic heat island, ENVI-met
article Article (RUS)
References

  1. Heinstein P. Christophe Ballif and Laure-Emmanuelle Perret-Aebi Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths. Green, 2013, no. 3(2), pp. 125–156. DOI:10.1515/green-2013-00120.
  2. Hassanpour A.E, Selker J.S., Higgins C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. Universita degli Studi della Tuscia, Italy. PLoS ONE 13(11) 2018. DOI:10.1371/journal.pone.0203256.
  3. Hernandez R.R., Easter S.B., Murphy-Mariscal M.L. at al. Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 2014, no. 29, pp. 766–779.
  4. Brian R. Burg, Patrick Ruch at al. Effects of radiative forcing of building integrated photovoltaic systems in different urban climates. ELSEVIER: Solar Energy, 2017, no. 147, pp. 399–405. DOI:10.1016/j.solener.2017.03.004.
  5. Ma S. et al. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia. Science Report, 2017, no. 7:43938, 6 p. DOI:10.1038/srep43938(2017).
  6. Barron-Gafford G.A. et al. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Science Report, 2016, no. 6:35070, 7 p. DOI:10.1038/srep35070 (2016).
  7. Jessica G. Lambert, Charles A.S. Hall, Stephen Balogh, Ajay Gupta, Michelle Arnold. Energy, EROI and quality of life. Energy Policy, 2014, no. 64, pp. 153–167.
  8. Ferroni F., Hopkirk R.J. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. ELSEVIER: Solar Energy, 2017, no. 147, pp. 399–405. DOI:10.1016/j.enpol.2016.03.034.
  9. Ferroni F., Guekos A., Hopkirk R.J. Further considerations to: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. ELSEVIER: Energy Policy, 2017, no. 107, pp. 153–167. DOI:10.1016/j.enpol.2017.05.007.
  10. Bubenchikov A. A., Demidova N. G., Avdeev D. V. et al. Ocenka Energeticheskoj i ekonomicheskoj effektivnosti primeneniya alternativnyh istochnikov energii v Omskom regione [Assessment of Energy and economic efficiency of alternative energy sources in the Omsk region. Omskij nauchnyj vestnik]. 2017, no. 6 (1516), pp. 67–75.
  11. Kovalev R.A., Kovaleva A.R. Analiz celesoobraznosti vvoda novyh i rekonstrukcii sushchestvuyushchih istochnikov teplovoj energii s ispol'zovaniem vozobnovlyaemyh resursov [Analysis of the application of new and reconstruction of existing sources of thermal energy with using renewable energy sources. Izvestiya TulGU. Tekhnicheskie nauki]. 2018, Issue 10, pp. 626–629.
  12. Heiskanen E., et al. Demonstration buildings as protected spaces for clean energy solutions e the case of solar building integration in Finland. Journal of Cleaner Production, 2015, vol. 109, pp. 347–356. DOI: 10.1016/j.jclepro.2015.04.090.
  13. Schmid D., Korkmaz H., Blesl M., Fahl U., Friedrich R. Analyzing transformation pathways to a sustainable European energy system – Internalization of health damage costs caused by air pollution. Energy Strategy Reviews, 2019, vol. 26, pp. 1–11. DOI:10.1016/j.esr.2019.100417.
  14. Jacobson M.Z., Ten Hoeve J.E. Effects of Urban Surfaces and White Roofs on Global and Regional Climate. JOURNAL OF CLIMATE, 2012, vol. 25, pp. 1028–1044. DOI:10.1175/JCLI-D-11-00032.1.
  15. Ruiz P., Nijs W., Tarvydas D., Sgobbi A. et al. ENSPRESO – an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Reviews, 2019, vol. 26, 12 p. DOI:10.1016/j.esr.2019.100379.
  16. Farkas K., Frontini F., Maturi L., Scognamiglio Scognamiglio A. et al. Designing photovoltatic systems for architectural integration. Criteria and guidelines for product and system developers. International Energy Agency. Report T.41.A.3/2: IEA SHC Task 41 Solar Energy and Architecture, 2013, 92 p.
  17. Solar Collectors and Panels, Theory and Applications. Editor Reccab M. Ochieng. Published by Sciyo/Janeza Trdine 9, 51000 Rijeka, Croatia, 2010, 454 p.
  18. Ilvitskaya S., Polyakov I. The artistic image of architecture usin alternative energy devices. Architecture and modern information technologies, 2017, no. 1(38), pp. 160–173. Available at: https://marhi.ru/AMIT/2017/1kvart17/PDF/12_AMIT_38_ILVITSKAYA_POLYAKOV_PDF.pdf
  19. Kazancev P.A. Arhitekturnye resheniya zhilyh maloetazhnyh domov s solnechnym otopleniem dlya 40-50° severnoj shiroty [Architectural concepts for solar-heated low-rise houses located 40-50 degrees North latitude. Vestnik Dalnevostochnogo gosudarstvennogo tekhnicheskogo universiteta]. 2010, no. 2(4), pp. 80–91.
  20. Gagnon P., Margolis R., Melius J., Phillips C., Elmore R. Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment. National Renewable Energy Laboratory, Technical Report NREL/TP-6A20-65298, 2016, 82 p.
  21. Frontini F., Frizen F. Fotoelektricheskie moduli, integrirovannye v ograzhdayushhie konstrukcii zdanij [Building envelope integrated photovoltaic modules. Zdaniya vysokih texnologij]. 2013, pp. 86–91.
  22. Frontini F., Bonomo P., Chatzipanagi A. BIPV Product Overview for Solar Facades and Rroofs. University of Applied Sciences and Arts of Southern Switzerland, 2015, 47 p.
  23. Heidari N., Gwamuri J., Townsend T. and Pearce J.M. Impact of Snow and Ground Interference on Photovoltaic Electric System Performance. IEEE Journal of Photovoltaics, 2015, vol. 5, no.6 Nov, pp. 1680–1685.
  24. Gevorkian P. Alternative energy systems in building design. The McGraw-Hill Companies, Inc. USA, 2010, 545 p. ISBN: 978-0-07-162524-1.
  25. Jaclyn Cowen. Planning for solar: an examination of photovoltaic technology within the built form Australia, BPLAN, 2008, 95 p.
  26. Chernish N.D., Sidiakina A.Y. Vliyanie sredstv vozobnovlyaemoj energetiki na formirovanie arhitekturnogo obraza zdanij [The effect of using renewable eneergy for the formation of the architectural image of buildings. Universitetskaya nauka]. 2019, no. 1(7), pp. 70–76.
  27. Susan Ir., Antaryama I. G.N., Totok Noerwasito Ir. V. et al. Optimation of BIPV by folding architecture and users behavior in office building at Surabaya. Proceedings of International Conference: Sustainable built environment in the tropics: New technology, new behaviour? School of Architecture, Tarumanagara University, Jakarta, Indonesia, 12-13 November, 2012, 13 p.
  28. Baum R., Liotta S-J. Culturally Inspired Patterns for Photovoltatics. The Asian Conference on Arts and Humanities Official Conference Proceedings. ACAH 2011, Osaka, Japan, 2011, pp. 284–302.
  29. Vtoroj ocenochnyj doklad Rosgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federacii. Obshchee rezyume [The 2nd Roshydromet assessment report about climate changes and their consequences over the area of the Russian Federation]. Moscow, Rosgidromet, 2014, 61 p.
  30. Kislov A., Konstantinov P., Varentsov M., Samsonov T., Gorlach I., Trusilova K. Urban amplification of the global warming in Moscow megacity. EGU General Assembly 2015.Geophysical Research Abstracts, 2015, vol. 17. EGU2015-5620.
  31. Kislov A.V., Varentsov M.I., Gorlach I.A., Alekseeva L.I. «Ostrov tepla» Moskovskoj aglomeracii i urbanisticheskoe usilenie global'nogo potepleniya [«Heat island» of the Moscow agglomeration and the urban-induced amplification of global warming. Vestn. Mosk. un-ta. Ser. 5. Geografiya]. 2017, no. 4, pp. 12–19.
  32. Klimat Moskvy v usloviyah globalnogo potepleniya [Climate of Moscow in conditions of global warming. Ed. A.V. Kislova]. Moscow, 2017, 288 p.
  33. Alekseeva L.I., Myagkov M.S. Narushenie struktury teplovogo balansa deyatel'noj poverhnosti v Moskve pod vozdejstviem antropogennyh faktorov [Thermal imbalance of the active surface in Moscow under the influence of anthropogenic factors. Ustojchivoe razvitie. Nauka i Praktika]. 2004, no. 3. pp. 41–50.
  34. Gorod, arhitektura, chelovek i klimat [City, architecture, men and climate. Ed. M.S. Myagkova]. Moscow, «Arhitektura-S», 2007, 344 p.
  35. Lokoshchenko M.A. Urban ‘heat island’ in Moscow. Urban Clim, 2014, vol.10, no. 3, pp. 550–562.
  36. Lokoshchenko M.A. Urban heat island and urban dry island in Moscow and their centennial changes. J. App. Meteorol. And Climatol, 2017, vol. 56, no. 10, pp. 2729–2745.
  37. Alekseeva L.I. Osobennosti gorodskogo «ostrova tepla» v Moskve v 2018 godu v prizemnom sloe vozduha po dannym meteorologicheskoj seti [Features of the urban “heat island” in Moscow in 2018 in the surface air layer according to the meteorological network. In the book Ekologo-klimaticheskie harakteristiki atmosfery Moskvy v 2018 g. po dannym Meteorologicheskoj observatorii MGU imeni M.V.Lomonosova. Ed. M.A. Lokoshchenko]. Moscow, MAKS Press, 2019, pp. 95–110.
  38. Grimmond C.S.B. Progress in measuring and observing the urban atmosphere. Theoretical and Applied Climatology, 2006, vol. 84, no. 1–3, pp. 3–22.
  39. Spravochnik ekologo-klimaticheskih harakteristik Moskvy. Tom 2 (pod red. d.g.n. A.A. Isaeva) [Guide to the ecological and climatic characteristics of Moscow. Volume 2]. Moscow, 2005, 410 p.
  40. Mertens K., Roth G. Photovoltaics: fundamentals, technology and practice. John Wiley & Sons Ltd, 2014, 297 p.
  41. Konstantinov P.I., Varentsov M.I., & Malinina E.P. Modeling of thermal comfort conditions inside the urban boundary layer during Moscow’s 2010 summer heat wave (case-study). Urban Climate, 2014, vol.10, no. 3, pp. 563–572. Available at: https://doi.org/10.1016/j.uclim.2014.05.002
  42. Blazejczyk K. et al. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol, 2012, no. 56, pp. 515–535.
  43. Shartova N., Shaposhnikov D., Konstantinov P., Revich B. Opredelenie porogov temperaturno-zavisimoj smertnosti na osnove universalnogo indeksa teplovogo komforta – UTCI [Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality. Health Risk Analysis]. 2019, no. 3, pp. 83–93.

For citation

Myagkov M., Alekseeva L. Photovoltaic Panels and Bioclimatic Comfort in an Architectural Environment. Architecture and Modern Information Technologies, 2020, no. 2(51), pp. 255–288. Available at: https://marhi.ru/AMIT/2020/2kvart20/PDF/14_myagkov.pdf DOI: 10.24411/1998-4839-2020-15114