ÌÀÐÕÈ
ËÈ×ÍÛÉ ÊÀÁÈÍÅÒ ÑÒÓÄÅÍÒÀ
ÏÐÎÅÊÒÍÛÅ ÃÐÓÏÏÛ III ÊÓÐÑÀ 2024/2025 ó÷. ã.
ÊÎÍÔÅÐÅÍÖÈÈ 2023-2024
Âûáîðû çàâåäóþùèõ êàôåäðàìè. Êîíêóðñ ÏÏÑ
ÔÀÊÓËÜÒÅÒ ÏÎÂÛØÅÍÈß ÊÂÀËÈÔÈÊÀÖÈÈ
2024 - ÃÎÄ ÑÅÌÜÈ
ÍÀÖÈÎÍÀËÜÍÛÉ ÏÐÎÅÊÒ "Íàóêà è Óíèâåðñèòåòû"
ÑÒÀƨРÌèíîáðíàóêè Ðîññèè
ÇÀÙÈÒÀ ÏÐÀÂ ÍÅÑÎÂÅÐØÅÍÍÎËÅÒÍÈÕ Â ÑÅÒÈ ÈÍÒÅÐÍÅÒ


English version Russian version



INTERNATIONAL SCIENTIFIC AND EDUCATIONAL ONLINE JOURNAL 
ARCHITECTURE AND MODERN INFORMATION TECHNOLOGIES

3(40) 2017


ArticleAPPROACHES TO THE ASSESSMENT OF ECOLOGICAL EFFICIENCY OF USE OF HEAT-INSULATING MATERIALS
Authors P.M. Zhuk, Moscow Institute of Architecture (State Academy), Moscow, Russia
Th. Lützkendorf,
Karlsruhe Institute of Technology, Karlsruhe, Germany
Abstract

The assessment of the input/costs and benefits (efficiency) of the use of different thermal insulation materials is becoming increasingly important. In such assessments, it is essential to consider not only economic aspects, but also the arising effects on the environment. Different methods exist for this purpose, including the internal rate of return (IRR), the payback period (PP) on the basis of the amount of energy saved and the resulting reduction in heating costs (economic assessment), as well as the ecological payback period (EPP) taking into account the amount of CO2 equivalents associated with the production of the insulation materials and the amount of avoided GHG emissions during their use phase (environmental assessment). The paper presents the determination and interpretation of a coefficient for the description and assessment of the eco-efficiency of thermal insulation materials. In future, the results of such environmental performance assessments should be available to both architects and clients. In this sense, a number of steps are also proposed pointing both governmental institutions and private sector in the direction of harnessing these possibilities.

Keywords: ecological efficiency, heat-insulating materials, efficiency assessment methods
article Article (RUS)
References

  1. Mötzl H., Zelger Th. u. a. Ökologie der Dämmstoffe. IBO Österreichisches Institut für Baubiologie und -Ökologie, Donau-Universität Krems, Zentrum für Bauen und Umwelt. Springer-Verlag, Wien, 2010.
  2. Zhuk P.M. Sistema otsenki ekologicheskoy bezopasnosti po zhiznennomu tsiklu neorganicheskikh voloknistykh teploizoljatsionnykh materialov [Evaluation System of Ecological Safety on Life Cycle og Inorganic Fibrous Heat-Insulating Materials] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 12, pp. 118-122.
  3. Hall C.A. Introduction to special Issue on New Studies in EROI (Energy Return on Investment). Sustainability 2011, 3(10), pp. 1773‒1777. Available at: www.mdpi.com/2071-1050/3/10/1773
  4. Ochkov V.F., Jakovlev I.V., Loskutova T.M., Chzho Ko. Raschety v Internete: energosberezhenie [Calculations on the Internet: energy saving. Magazine Energy saving and water treatment]. 2012, no. 4 (78), pp. 30-34.
  5. Gagarin V.G. Metody ekonomicheskogo analiza povyshenija urovnja teplozaschity ograzhdajuschih konstruktsiy zdaniy [Methods of the economic analysis of increase in level of a heat-shielding of building constructions. Magazine ABOK. Proceedings of Russian Association Engineers for Heating, Ventilation, Air-conditioning, Heat Supply and Building Thermal Physics]. 2009, no. 2, pp. 10-16.
  6. Lützkendorf Th. „Graue Energie“ in Dämmstoffen – ein Teilaspekt. Lohnt sich Dämmung aus Sicht von Ökobilanzen? – Wärmeschutztag, FIW – München, 2013.
  7. Wallbaum H., Buerkin C. Concepts and Instruments for a Sustainable Construction sector. UNEP Industry and Environment. April – September 2003, pp. 53-57.
  8. Bossenmayer Horst J. Aktualnaya informatsiya o technicheskih normah I pravovom regulirovanii ustoychivogo stroitelstva v Evropeyskom Soyuze [Actual Information about technical Standards and legal regulation of the sustainable building in the European Union]. Sustainable architecture: the present and the future. Articles of international symposium, 17-18 November 2011. Scientific articles of Moscow Institute of Architecture (State Academy) and group KNAUF CIS. Moscow, Adelant Ltd, 2012, pp. 63-66.
  9. DIN EN 15804:2014-07 Sustainability of construction works ‒ Environmental product declarations - Core rules for the product category of construction products.
  10. ISO 14025:2006 Environmental labels and declarations ‒ Type III environmental declarations ‒ Principles and procedures.
  11. Suter P., Hofstetter P. Die ökologische Rückzahldauer: ein Instrument der Umwelttechnik Schweizer Ingenieur und Architekt, Band 107, Heft 49 (1989).
  12. Dämmstoffe. Produktgruppeninformation. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Available at: http://www.wecobis.de/bauproduktgruppen/daemmstoffe.html

For citation

Zhuk P.M., Lützkendorf Th. Approaches to the Assessment of Ecological Efficiency of Use of Heat-Insulating Materials. Architecture and Modern Information Technologies, 2017, no. 3(40), pp. 243-251. Available at: http://marhi.ru/eng/AMIT/2017/3kvart17/18_zhuk-lutzkendorf/index.php