ÌÀÐÕÈ
ËÈ×ÍÛÉ ÊÀÁÈÍÅÒ ÑÒÓÄÅÍÒÀ
ÏÐÎÅÊÒÍÛÅ ÃÐÓÏÏÛ III ÊÓÐÑÀ 2024/2025 ó÷. ã.
ÊÎÍÔÅÐÅÍÖÈÈ 2023-2024
Âûáîðû çàâåäóþùèõ êàôåäðàìè. Êîíêóðñ ÏÏÑ
ÔÀÊÓËÜÒÅÒ ÏÎÂÛØÅÍÈß ÊÂÀËÈÔÈÊÀÖÈÈ
2024 - ÃÎÄ ÑÅÌÜÈ
ÍÀÖÈÎÍÀËÜÍÛÉ ÏÐÎÅÊÒ "Íàóêà è Óíèâåðñèòåòû"
ÑÒÀƨРÌèíîáðíàóêè Ðîññèè
ÇÀÙÈÒÀ ÏÐÀÂ ÍÅÑÎÂÅÐØÅÍÍÎËÅÒÍÈÕ Â ÑÅÒÈ ÈÍÒÅÐÍÅÒ


English version Russian version



ÌÅÆÄÓÍÀÐÎÄÍÛÉ ÝËÅÊÒÐÎÍÍÛÉ ÑÅÒÅÂÎÉ ÍÀÓ×ÍÎ-ÎÁÐÀÇÎÂÀÒÅËÜÍÛÉ ÆÓÐÍÀË
"ARCHITECTURE AND MODERN INFORMATION TECHNOLOGIES" 
(ÀÐÕÈÒÅÊÒÓÐÀ È ÑÎÂÐÅÌÅÍÍÛÅ ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÒÅÕÍÎËÎÃÈÈ)

1(54) 2021

Íàçâàíèå ñòàòüè

ÒÅÕÍÎËÎÃÈ×ÅÑÊÈÅ ÎÑÎÁÅÍÍÎÑÒÈ ÊËŨÍÛÕ ÄÅÐÅÂßÍÍÛÕ ÊÎÍÑÒÐÓÊÖÈÉ

Àâòîðû

Ý.À. Àêøîâ
Ìîñêîâñêèé àðõèòåêòóðíûé èíñòèòóò (ãîñóäàðñòâåííàÿ àêàäåìèÿ), Ìîñêâà, Ðîññèÿ

Àííîòàöèÿ

 ñòàòüå ðàññìîòðåíû òåõíîëîãè÷åñêèå îñîáåííîñòè êëååíûõ äåðåâÿííûõ êîíñòðóêöèé êàê ïåðñïåêòèâíûõ ñòðîèòåëüíûõ ýëåìåíòîâ, îáëàäàþùèõ âûñîêèìè ïðî÷íîñòíûìè õàðàêòåðèñòèêàìè, ëåãêîñòüþ òðàíñïîðòèðîâêè. Èññëåäîâàíî èõ ïðîèçâîäñòâî è âëèÿíèå íà ýêîëîãèþ. Íà îñíîâå äàííûõ î ïîãëîùåíèè óãëåêèñëîãî ãàçà è óäåðæàíèè áèîãåííîãî óãëåðîäà ïðîäåìîíñòðèðîâàíû ýêîëîãè÷åñêèå ïðåèìóùåñòâà èñïîëüçîâàíèÿ êëååíûõ äåðåâÿííûõ êîíñòðóêöèé.  ìàòåðèàëå ïîêàçàíà âàðèàòèâíîñòü ïðîèçâîäñòâà êëååíûõ äåðåâÿííûõ êîíñòðóêöèé ñ ïîìîùüþ ñòåêëîïëàñòíîãî êëåÿ FRP èëè àëüòåðíàòèâíîãî ìåòîäà, îñíîâàííîãî íà äþáåëüíûõ ñîåäèíåíèÿõ.

Êëþ÷åâûå ñëîâà

ýêîëîãè÷åñêàÿ ïàðàäèãìà, êëååíûå äåðåâÿííûå êîíñòðóêöèè â àðõèòåêòóðå, îöåíêà æèçíåííîãî öèêëà (ÎÆÖ), LVL-áðóñ, CLT-ïàíåëè

Ïîëíûé òåêñò ñòàòüè Ïîëíûé òåêñò ñòàòüè
Ñïèñîê öèòèðóåìîé ëèòåðàòóðû

  1. Valentini R., Matteucci G., Dolman A.J., Schulze E.-D., Rebmann C., Moors E.J. et al. Respiration as the main determinant of carbon balance in European forests // Nature. – 2000. – Vol. 404. – P. 861–865.
  2. Broadmeadow M., Matthews R. Forests, carbon and climate change: the UK contribution // For. Comm. Inf. – Note 48. – 2003. – P. 1–12.
  3. Puettmann M., Sinha A., Ganguly I. Life cycle energy and environmental impacts of cross laminated timber made with coastal douglas-fir // Journal of Green Building. – 2019. – 14(4). – P. 17–33.
  4. Äåìåíòüåâ Ä.À. Ñîâðåìåííûé îïûò ñòðîèòåëüñòâà ìíîãîêâàðòèðíûõ äåðåâÿííûõ äîìîâ â çàðóáåæíûõ ñòðàíàõ // Architecture and Modern Information Technologies. –2020. – ¹1(50). – Ñ. 95–108. – URL: https://marhi.ru/AMIT/2020/1kvart20/PDF/06_dementiev.pdf DOI: 10.24411/1998-4839-2020-15006 (äàòà îáðàùåíèÿ: 25.01.2021).
  5. Bowers T., M.E. Puettmann I. Ganguly, Eastin I. Cradle-to-gate life-cycle assessment of glue-laminated (glulam): Environmental Impacts from glulam produced in the US Pacific Northwest and southeast // Forest Products Journal. – 2017. – ¹ 67(5/6). – P. 368–380.
  6. Li Z., Zhou R., He M., Sun X. Modern timber construction technology and engineering applications in China // Proc. Inst. Civ. Eng. Civil Eng. – 2019. – ¹ 172(5). – P. 17–27.
  7. Plevris N., Triantafillou T.C. FRP-reinforced wood as structural materials // J. Mater. Civil Eng. – 1992. – ¹ 4(3). – P. 300–317.
  8. Tingley D.A. High-strength fiber-reinforced plastic of wood and wood composite // 41st international society for the advancement of material and process engineering (SAMPE) symposium. – Anaheim, California, 1996. – P. 667–673.
  9. Tingley D.A. Over a decade of research results in new, improved glulam // Canadian Consulting Engineer. – 1996. – P. 24–28.
  10. Dorey A.B., Cheng R.J. Development of composite glued laminated timber. Canadian Forest Service Cat // Fo42-91/146-1996E. Canadian-Alberta Partnership Agreement in Forestry. – Edmonton, Alta, 1996.
  11. Hindman D.P., Bouldin J.C Mechanical properties of southern pine cross-laminated timber // Journal of Materials in Civil Engineering. – 2015.

    Äëÿ öèòèðîâàíèÿ

    Àêøîâ Ý.À. Òåõíîëîãè÷åñêèå îñîáåííîñòè êëå¸íûõ äåðåâÿííûõ êîíñòðóêöèé // Architecture and Modern Information Technologies. – 2021. – ¹1(54). – Ñ. 156164. – URL: https://marhi.ru/AMIT/2021/1kvart21/PDF/10_akshov.pdf DOI: 10.24412/1998-4839-2021-1-156-164


    ÑÎÄÅÐÆÀÍÈÅ ÆÓÐÍÀËÀ